厦门大学数学学院师资队伍
School of Mathematical Sciences Xiamen University
师资队伍

  

王焰金(Yanjin Wang

     “自强不息 止于至善” 

个人简历

(博士,教授,博士生导师)

  • 2015.08~#: 厦门大学数学科学学院  教授
  • 2013.08~2015.07: 厦门大学数学科学学院  副教授
  • 2011.07~2013.07: 厦门大学数学科学学院  助理教授

  • 2001.09~2011.06: 厦门大学数学科学学院  学士&博士 
  • 2009.09~2010.12: Brown University  Joint PhD under CSC

  • 2017.01~2018.01: The Chinese University of Hong Kong  Senior Research Assistant
  • 2013.09~2014.09: The Chinese University of Hong Kong  Postdoc Fellow

  • 2016.06~2016.09: The Chinese University of Hong Kong  Visiting Scholar (Honorary)
  • 2015.06~2015.09: The Chinese University of Hong Kong  Visiting Scholar  

教学课程

  • 2011~2012: 数学分析I、II、III
  • 2012~2013: 数学分析I、II
  • 2014~2015: 数学分析I、III;偏微分方程
  • 2015~2016: 微积分I;偏微分方程(研) 
  • 2016~2017: 常微分方程
  • 2017~2018: 微积分II
  • 2018~2019: 偏微分方程

研究兴趣

偏微分方程:
Nonlinear partial differential equations arising from fluid dynamics (e.g. Navier-Stokes equations, Euler equations) and kinetic theory (e.g. Boltzmann equation, Landau equation).

部分论文 

  • Yanjin WangSharp nonlinear stability criterion of viscous non-resistive MHD internal waves in 3D, Archive for Rational Mechanics and Analysis, Online (2018). DOI: https://doi.org/10.1007/s00205-018-1307-4. 69pp.
    http://arxiv.org/pdf/1602.02554.pdf

  • Zhong Tan and Yanjin Wang*, Global well-posedness of an initial-boundary value problem for viscous non-resistive MHD systems, SIAM Journal on Mathematical Analysis50(1) (2018), 14321470. 39pp.
    http://arxiv.org/pdf/1509.08349.pdf


  • Peng Qu and Yanjin Wang*, Global classical solutions to partially dissipative hyperbolic systems violating the Kawashima condition, Journal de Mathématiques Pures et Appliquées, 109 (2018), 93146. 54pp.
    http://arxiv.org/pdf/1508.02867v2.pdf

  • Juhi Jang, Ian Tice and Yanjin Wang, The compressible viscous surface-internal wave problem: stability and vanishing surface tension limit, Communications in Mathematical Physics, 343(3) (2016), 10391113. 75pp.
    http://arxiv.org/pdf/1501.07579v1.pdf

  • Juhi Jang, Ian Tice and Yanjin Wang, The compressible viscous surface-internal wave problem: nonlinear Rayleigh–Taylor instability, Archive for Rational Mechanics and Analysis, 221(1) (2016), 215–272. 58pp.
    http://arxiv.org/pdf/1501.07583v1.pdf

  • Juhi Jang, Ian Tice and Yanjin Wang*, The compressible viscous surface-internal wave problem: local well-posedness, SIAM Journal on Mathematical Analysis, 48(4) (2016), 26022673. 72pp.
    http://arxiv.org/pdf/1501.07577v1.pdf

  • Zhong Tan and Yanjin Wang*, On hyperbolic-dissipative systems of composite type, Journal of Differential Equations, 260(2) (2016),  1091–1125. 35pp.

  • Yanjin Wang, The two-species Vlasov–Maxwell–Landau system in R3, Annales de l'Institut Henri Poincaré / Analyse non linéaire32(5) (2015), 1099–1123. 25pp.

  • Zhong Tan, Yanjin Wang and Yong Wang, Stability of Steady States of the Navier–Stokes–Poisson Equations with Non-Flat Doping Profile, SIAM Journal on Mathematical Analysis, 47(1) (2015), 179209. 31pp.
    http://arxiv.org/pdf/1207.2207v2.pdf

  • Zhong Tan, Yanjin Wang and Yong Wang, Decay estimates of solutions to the compressible Euler–Maxwell system in R3, Journal of Differential Equations, 257(8) (2014), 2846–2873. 28pp.
    http://arxiv.org/pdf/1506.02199v1.pdf

  • Zhong Tan and Yanjin Wang*, Zero surface tension limit of viscous surface waves, Communications in Mathematical Physics, 328(2) (2014), 733–807. 75pp.
    http://arxiv.org/pdf/1212.1017v1.pdf
      
  • Yanjin Wang, Ian Tice and Chanwoo Kim, The viscous surface-internal wave problem: global well-posedness and decay, Archive for Rational Mechanics and Analysis, 212(1) (2014), 1–92. 92pp.
    http://arxiv.org/pdf/1109.1798v2.pdf 
     
  • Fei Jiang, Song Jiang and Yanjin Wang, On the Rayleigh–Taylor instability for incompressible viscous magnetohydrodynamic equations, Communications in Partial Differential Equations, 39(3)(2014), 399–438. 40pp.
    http://arxiv.org/abs/1204.6402v2.pdf 
     
  • Yanjin Wang, Decay of the two-species Vlasov–Poisson–Boltzmann system, Journal of Differential Equations, 254(5) (2013), 2304–2340. 37pp.
    http://arxiv.org/pdf/1111.6335v1.pdf 
     
  • Yan Guo and Yanjin Wang*, Decay of dissipative equations and negative Sobolev spaces, Communications in Partial Differential Equations, 37(12) (2012), 21652208. 44pp.
    http://arxiv.org/pdf/1111.5660v1.pdf
     
  • Yanjin Wang* and Ian Tice, The viscous surface-internal wave problem: nonlinear Rayleigh–Taylor instability, Communications in Partial Differential Equations, 37(11) (2012), 1967–2028. 62pp.
    http://arxiv.org/pdf/1109.5657v1.pdf
     
  • Yanjin Wang, Global solution and time decay of the Vlasov–Poisson–Landau system in R3, SIAM Journal on Mathematical Analysis, 44(5) (2012), 32813323. 43pp.
    http://arxiv.org/pdf/1205.6277v1.pdf

  • Yanjin Wang, Decay of the Navier–Stokes–Poisson equations, Journal of Differential Equations, 253(1) (2012), 273–297. 25pp.
    http://arxiv.org/pdf/1112.4902v1.pdf
     
  • Yanjin Wang, Critical Magnetic Number in the magnetohydrodynamic Rayleigh–Taylor instability, Journal of Mathematical Physics, 53(7) (2012), 073701. 22pp.
    http://arxiv.org/pdf/1009.5422v2.pdf
     
  • Yanjin Wang, The diffusive limit of the Vlasov–Boltzmann system for binary fluids, SIAM Journal on Mathematical Analysis, 43(1) (2011), 253–301. 49pp. 
       
  • Zhong Tan and Yanjin Wang*, Global existence and large-time behavior of weak solutions to the compressible magnetohydrodynamic equations with Coulomb force, Nonlinear Analysis:Theory Methods & Applications, 71(11) (2009), 5866–5884. 19pp. 

 基金项目

  • 主持国家自然科学基金面上项目No. 11771360
  • 参加国家自然科学基金重点项目No. 11531010
  • 主持福建省自然科学杰出青年基金,No. 2015J06001
  • 主持高等学校全国优秀博士学位论文作者专项资金,No. 201418
  • 主持国家自然科学基金青年项目,No. 11201389
  • 主持高等学校博士学科点专项科研基金新教师类项目,No. 20120121120023
  • 主持福建省自然科学基金青年项目,No. 2012J05011

主要奖项

  • 2013年全国百篇优秀博士学位论文奖
  • 2015年福建省自然科学杰出青年基金
  • 2015年福建省高校新世纪优秀人才支持计划
  • 2018年厦门大学南强青年拔尖人才支持计划

 

 
 
 
简介
 
系别:
数学与应用数学系
办公室:海韵园物理机电航空大楼604
教师:王焰金
职称:教授
职务:教师
Phone:0592-2580613
Email:
yanjin_wang@xmu.edu.cn
研究方向:
偏微分方程(PDE)