Cheng LX, Cheng QJ, Xu KK, Zhang Wen, Zheng ZM., A Bishop-Phelps-Bollobás Theorem for Asplund Operators. Acta Math. Sin. (Engl. Ser.) 36 (2020), no. 7, 765--782.
Ablet E, Cheng LX, Cheng QJ, Zhang Wen., Every Banach space admits a homogenous measure of non-compactness not equivalent to the Hausdorff measure, Science China: Mathematics, 62 (2019), no. 1, 147--156.
Cheng LX, Cheng QJ, Shen QR, Tu K, Zhang Wen., A new approach to measures of noncompactness of Banach spaces, Studia Mathematica, 240 (2018), no. 1, 21--45.
Cheng LX, Shen QR, Zhang Wen, Zhou Y., More on Stability of Almost Surjective ε-isometries of Banach Spaces,Science China: Mathematics, 60 (2017), no. 2, 277--284.
Cheng LX, Luo ZH, Zhang Wen, Zheng BT., On proximinality of convex sets in superspaces. Acta Math. Sin. (Engl. Ser.) 32 (2016), no. 6, 633--642.
Cheng LX, Tu K, Zhang Wen., On weak stability of ε-isometries on wedges and its applications.J. Math. Anal. Appl. 433 (2016), no. 2, 1673--1689.
Lin P-K, Zhang Wen, Zheng BT., Ball Proximinal and Strongly Ball Proximinal Spaces. J.Convex. Anal. 22 (2015), no. 3, 673--685.
Lin P-K, Zhang Wen, Zheng BT., Stability of Ball Proximinality. J.Approx.Theory. 183 (2014), 72--81.
Cheng LX, Dong YB, Zhang Wen.,On Stability of Nonlinear Nonsurjective εIsometries of Banach spaces. J. Funct. Anal. 264 (2013), no. 3, 713--734.
Zhang Wen., Characterizations of Universal Finite Representability and B-convexity of Banach Spaces via Ball Coverings. Acta Math Sin. (Engl. Ser.) 28 (2012), no.7, 1369--1374.
Cheng LX, Wang B, Zhang Wen, Zhou Y., Some Geometric and Topological Properties of Banach Spaces via Ball Coverings. J. Math. Anal. Appl. 377 (2011), no. 2, 874--880.
Cheng LX, Cheng QJ, Wang B, Zhang Wen., On Super-weakly Compact Sets and Uniformly Convexifiable Sets. Studia Math. 199 (2010), no. 2, 145--169.
Cheng LX, Kadets V, Wang B, Zhang Wen., A Note on Ball Covering Property of Banach Spaces, J. Math. Anal. Appl. 371 (2010) No.1, 249--253.
Cheng LX, Luo ZH, Liu XF, Zhang Wen., Several Remarks on Ball Covering Properties of Normed Spaces. Acta Math Sin. (Engl. Ser.) 26 (2010), no. 9,1667--1672.
Cheng LX and Zhang Wen., A Note on Non-support points, Negligible Sets, Gateaux Differentiability and Lipschitz Embeddings, J. Math. Anal. Appl.350 (2009), No. 2, 531--536
Cheng LX, Cheng QJ, Luo ZH, Zhang Wen., Every Weakly Compact Set Can Be Uniformly Embedded into a Reflexive Banach Space. Acta Math. Sin. (Engl. Ser.) 25 (2009), No. 7, 1109--1112.
Cheng LX, Shi HH, Zhang Wen., Every Banach Space with a w*-separable Dual has an ε-equivalent Norm with the Ball Covering Property. Science in China Series A: Mathematics (2009) Vol. 52 No. 9 1869--1874.
近年参与的基金情况:
12071388 Banach空间上ε-等距映射的稳定性研究 国家自然科学基金 2021至2024
11731010 Banach空间的非线性几何及其应用 国家自然科学基金 2018至2022
2015J01022 逼近Lipschitz映射的稳定性研究 福建省自然科学基金 2015至2018
11471270 Lipschitz映射的可微性和稳定性研究 国家自然科学基金 2015至2018
11371296 Banach空间的扰动保距映射和粗保距映射 国家自然科学基金 2014至2017
11101340 无穷维Lipschitz映射的微分分析 国家自然科学基金 2012至2014
11071201 无穷维空间的嵌入几何与粗几何 国家自然科学基金 2011至2013
2010J05012 Lipschitz映射的可微性研究 福建省自然科学基金 2010至2013
10771175 Banach空间的局部嵌入与粗几何 国家自然科学基金 2008至2010