厦门大学数学学院师资队伍
School of Mathematical Sciences Xiamen University
师资队伍

一、教育经历

  • 2019年1月-至今: 博士后, 厦门大学数学科学学院     
  • 2013年9月-2018年12月: 硕博连读, 山东大学数学学院      
  • 2009年9月-2013年6月: 学士, 山东师范大学数学科学学院      

二、基金项目及获奖情况

  • 国家自然科学青年基金119014892020.01-2022.12),主持
  • 博士后创新人才支持计划BX201901872019.01-2021.01,主持
  • 中国博士后科学基金项目2019M6501522019.05-2021.05,主持
  • 中国工业与应用数学学会第16届年会优秀学生论文奖 
  • 山东省研究生优秀科技成果二等奖      

三、科研成果

  1X.L. Li, and H.X. RuiSuperconvergence of Characteristics Marker and Cell Scheme for the Navier-Stokes Equations on Nonuniform Grids. SIAM Journal on Numerical Analysis 56(3) (2018): 1313-1337.

   2X.L. Li, J. Shen, and H.X. Rui, Energy stability and convergence of SAV block-centered finite difference method for gradient flows. Mathematics of Computation 88(319) (2019): 2047-2068. 

   3 X.L. Li, and H.X. RuiSuperconvergence of a fully conservative finite difference method on nonuniform staggered grids for simulating wormhole propagation with the Darcy-Brinkman-Forchheimer framework. Journal of Fluid Mechanics 872 (2019): 438-471. 

   4H.X. Rui, and X.L. Li, Stability and Superconvergence of MAC Scheme for Stokes Equations on Non-uniform Grids. SIAM Journal on Numerical Analysis 553)(2017):1135-1158.

   5Z.G. Liu, and X.L. LiA Parallel CGS Block-centered Finite Difference Method for a Nonlinear Time-fractional Parabolic Equation. Computer Methods in Applied Mechanics and Engineering 3082016):330-348.          

   6X.L. Li, and H.X. RuiA Two-grid Block-centered Finite Difference Method for the Nonlinear Time-fractional Parabolic Equation. Journal of Scientific Computing 72(2)2017):863-891.

   7X.L. Li, and H.X. RuiBlock-Centered Finite Difference Method for Simulating Compressible Wormhole Propagation.  Journal of Scientific Computing 74(2) (2018): 1115-1145. 

   8Z.G. Liu, and X.L. LiEfficient modified techniques of invariant energy quadratization approach for gradient flows. Applied Mathematics Letters 2019.        

   9X.L. Li, and H.X. RuiA Two-grid Block-centered Finite Difference Method for Nonlinear Non-Fickian Flow Model. Applied Mathematics and Computation 2812016):300-313.

   10X.L. Li, and H.X. Rui, Characteristic Block-centered Finite Difference Method for Compressible Miscible Displacement in Porous Media.  Applied Mathematics and Computation 314 (2017): 391-407. 

   11X.L. Li, and H.X. Rui, Stability and Convergence of Characteristic MAC Scheme and Post-processing for the Oseen Equations on Non-uniform Grids.  Applied Mathematics and Computation 342 (2019): 94-111. 

   12X.L. Li, and H.X. Rui, Characteristic Block-centered Finite Difference Method for Simulating Incompressible Wormhole Propagation. Computers & Mathematics with Applications 73(10)2017):2171-2190.

   13X.L. Li, and H.X. RuiTwo Temporal Second Order H^1-Galerkin Mixed Finite Element Schemes for Distributed-Order Fractional Sub-Diffusion Equations. Numerical Algorithms 79(4)2018):1107-1130.

   14X.L. Li, H.X. Rui, and S.S. Chen, A fully conservative block-centered finite difference method for simulating Darcy-Forchheimer compressible wormhole propagation. Numerical Algorithms 822019451-478.

    15X.L. Li, and H.X. Rui, A High-order Fully Conservative Block-centered Finite Difference Method for the Time-fractional Advection–dispersion Equation. Applied Numerical Mathematics 124 (2018): 89-109. 

    16X.L. Li, and H.X. RuiA Block-centered Finite Difference Method for the Distributed-order Time-fractional Diffusion-wave Equation. Applied Numerical Mathematics 131 (2018): 123-139. 

    17X.L. Li, H.X. Ruiand S.S. Chen, Stability and Superconvergence of Efficient MAC Schemes for Fractional Stokes Equation on Non-uniform Grids. Applied Numerical Mathematics. 

    18X.L. Li, and H.X. Rui, A Block-centered Finite Difference Method for the Nonlinear Fractional Cable Equation on Non-uniform Rectangular Grids. Applied Numerical Mathematics  (2019) 

    19X.L. Li, H.X. Rui, and Z.G. Liu, A Block-Centered Finite Difference Method for Fractional Cattaneo Equation. Numerical Methods for Partial Differential Equations 34(1)  (2018): 296-316. 

    20X.L. Li, and H.X. Rui, A fully conservative block-centered finite difference method for Darcy-Forchheimer incompressible miscible displacement problem. Numerical Methods for Partial Differential Equations (2019). 

    21X.L. Li, and H.X. Rui, Stability and Superconvergence of MAC Schemes for Time Dependent Stokes Equations on Nonuniform Grids. Journal of Mathematical Analysis and Applications  466(2) (2018): 1499-1524. 

     22X.L. Li, and H.X. Rui, Characteristic Block-centred Finite Difference Methods for Nonlinear Convection Dominated Diffusion Equation. International Journal of Computer Mathematics 942017):386-404.

    23X.L. Li, and H.X. Rui, A Block-Centered Finite Difference Method for the Distributed-Order Differential Equation with Neumann Boundary Condition. International Journal of Computer Mathematics doi: 10.1080/00207160.2018.1455093.

   24X.L. Li, and H.X. Rui, Block-centered Finite Difference Methods for Non-Fickian Flow in Porous Media. Journal of Computational Mathematics 36(4) (2018): 492-516.

   25Z.G. Liu, and X.L. LiA Fast Finite Difference Method for a Continuous Static Linear Bond-Based Peridynamics Model of Mechanics. Journal of Scientific Computing 72 (4) (2018): 728-742. 

 
 
 
简介
 
系别:
信息与计算数学系
办公室:实验楼109
教师:李晓丽
职称:
职务:==空==
Phone:
Email:
xiaolisdu@163.com
研究方向:
偏微分方程数值解法